

# **DOES MHEALTH SERVICES WORTH IN INDIA? A STUDY WITH REFERENCE TO GUJARAT STATE**

**Dr. Mohammadali Gulamhaidar Hajur, Dr. Shabbirali Sherali Thavara**

Assistant Professor,

Gandhinagar Institute of Commerce, Gandhinagar University, Kalol Khatraj, Gujarat, India

Email: mohammadalihajur@gmail.com

ORCID ID: <https://orcid.org/0009-0006-5064-2337>

Assistant Professor,

D.L Patel Commerce College (Affiliated to HNGU, Patan), Vidhyanagari campus, Himmatnagar, Gujarat, India.

Email: thavara58@gmail.com

ORCID ID: <https://orcid.org/0009-0006-4821-4560>

## **Abstract**

*In today's digital era, the healthcare sector is increasingly adopting innovative technologies to enhance patient experiences. However, in India, especially in Gujarat, mobile health (mHealth) adoption is still developing. A study conducted with 426 respondents using electronic devices for health monitoring identified key factors affecting mHealth adoption. Using Exploratory Factor Analysis (EFA) and multiple regression, the research found that performance expectancy was the most significant factor in mHealth adoption, while perceived intrusion had minimal impact. Additionally, waiting time did not significantly affect adoption. These findings suggest that improving performance expectancy should be a priority for healthcare providers to enhance mHealth adoption, effectiveness, and overall patient care in the digital healthcare landscape.*

**Key Words:** Digital health, E-Health, M-Health, Technology in Health, Telemedicine

## **INTRODUCTION**

India faces significant challenges in healthcare, with notable disparities in quality and accessibility across different regions. According to the Global Burden of Disease, India ranks 145th out of 194 countries for healthcare quality, with its Healthcare Access and Quality (HAQ) score at 41.2 in 2016, showing some improvement over the years (Yadavar, 2019). However, substantial gaps persist, particularly between rural and urban areas. For example, Kerala has one of the lowest infant mortality rates in the country, while Uttar Pradesh faces much higher rates. Additionally, despite overall improvements in life expectancy and reduced infant and maternal mortality rates, state-wise disparities remain a challenge. Heart disease, pulmonary disease, and lower respiratory infections are some of the leading causes of years lost due to disability (DALY) in India (Rosling, 2019). In this context, mobile health (mHealth) technologies present a promising solution to bridge these gaps and improve healthcare delivery. mHealth, which leverages mobile phones, wearables, and other digital tools, can empower individuals to manage their health more effectively and provide healthcare access to underserved populations. Digital health, which integrates various digital technologies into healthcare systems, offers the potential to enhance the efficiency, personalization, and precision of healthcare delivery. However, despite its promise, the adoption of mHealth technologies in India is hindered by several factors, including access to technology, education, and awareness, particularly in rural and tribal areas.

This study focuses on understanding the factors that affect the adoption and success of mobile health (mHealth) services in India. It examines the challenges faced by both individuals and healthcare professionals across different regions of the country. The research identifies the major barriers that limit the use of mHealth services and discusses practical strategies to improve their accessibility, usability, and effectiveness. By doing so, the study aims to show how mobile health solutions can better address India's healthcare needs and help overcome existing healthcare challenges.

## **LITERATURE REVIEW**

The adoption and effectiveness of mobile health (mHealth) services have been widely studied across various regions, revealing several key factors that influence user acceptance. Deng, et. al (2014) differentiated mHealth adoption among middle-aged and older adults in China, using the Value Behavior Model and the Theory of Planned Behavior, and found that attitude was the most significant factor. Similarly, Shareef, et. al. (2014) used the Technology Acceptance Model (TAM) in Bangladesh and identified perceived ease of use, perceived usefulness, security, and reliability as key determinants of mHealth adoption. In Bangladesh, Hoque, et. al. (2015) also applied TAM and found perceived ease of use and perceived usefulness as essential factors influencing mHealth adoption. Hoque & Sorwar (2017) confirmed the relevance of the Unified Theory of Acceptance and Use of Technology

(UTAUT) in explaining mHealth adoption among the elderly in developing countries. In Finland, Nikou, S. (2015) highlighted that ease of use, interface design, and willingness to pay significantly impact the attitudes and intentions of older adults aged 60–75 years. Currie (2016) compared mobile health adoption across countries and found that France led in mobile technology adoption, while the USA faced barriers due to strict regulations. Chigona, et. al., (2017) studied the use of mobile phones in improving maternal health in Malawi, revealing that contextual factor, such as social, environmental, and personal circumstances, affect health outcomes. Emmanuel, et. al. (2016) emphasized the importance of socio-materiality in mHealth adoption in rural Nigeria, demonstrating the interdependency between social and technical factors in expanding mHealth services.

Ndayizigamiye & Maharaj (2017) applied the Diffusion of Innovation (DOI) theory to examine mHealth adoption in Burundi, finding that relative advantage, triability, compatibility, and observability positively influenced adoption among healthcare professionals. In Bangladesh, Nabila et. al. (2019) used UTAUT and UTAUT2 models and found that facilitating conditions were the most significant factor influencing mHealth adoption.

Studies in China, such as Rui, et al. (2017) and Yang Zhao, (2018), highlighted that perceived ease of use, perceived usefulness, subjective norms, and network effects are critical in shaping mHealth adoption. Similarly, Ibukun, et. al. (2018) found that mHealth solutions are most effective when perceived as useful and easy to use, especially in low- and middle-income countries. According to surveys by Deloitte (2018) and Accenture (2018), the use of wearable devices and mobile health apps has increased, with many individuals willing to share health information with healthcare providers. Alam et. al. (2020) found that user satisfaction, perceived value, and factors like trust and e-health literacy significantly influence mHealth adoption. These elements, along with self-efficacy, shape continued usage, with regional and demographic variations.

#### Hypothesis and Proposed Model:

This study examines key factors affecting the adoption of mobile health (mHealth) technologies in Gujarat, India, focusing on hedonic motivation, performance expectancy, waiting times, privacy concerns, and ease of use. It also explores the role of social influence, facilitating conditions, and psychological factors such as perceived intrusion and the secondary use of personal information.

H1 – Hedonic Motivation significantly affect adoption of mHealth in Gujarat state.

H2 – Performance Expectancy significantly affect adoption of mHealth in Gujarat state.

H3 –Waiting Time significantly affect adoption of mHealth in Gujarat state.

H4 –Percieved Surveillance significantly affect adoption of mHealth in Gujarat state.

H5 – Effort Expectancy significantly affect adoption of mHealth in Gujarat state.

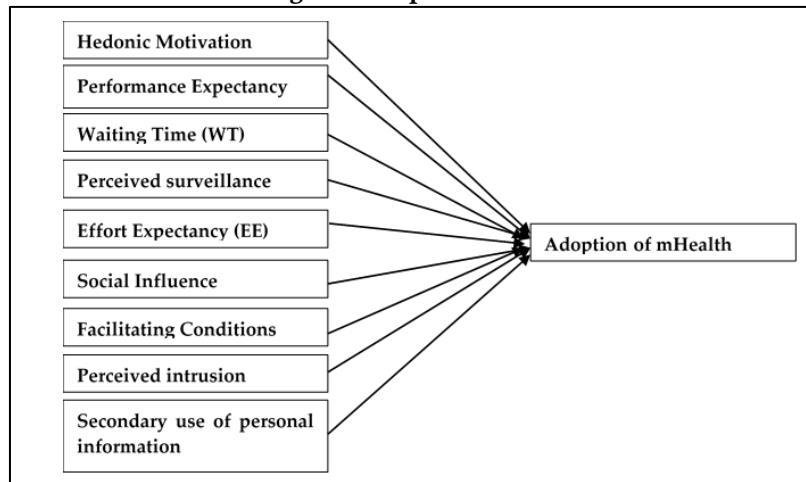
H6 – Social Influence significantly affect adoption of mHealth in Gujarat state.

H7 – Facilitating Conditions significantly affect adoption of mHealth in Gujarat state.

H8 – Percieved intrusion significantly affect adoption of mHealth in Gujarat state.

H9 – Secondary use of personal information significantly affect adoption of mHealth in Gujarat state.

**Figure 1 Proposed Model**



[Source: Researcher Own Generated]

## RESEARCH METHODOLOGY

### Research design

A Quantitative approach is used to explore mHealth adoption in India. Data was collected through a structured questionnaire, focusing on user motivations and challenges. A diverse sample was gathered using online convenience and snowball sampling

methods.

#### Data collection

The study gathered data from 426 respondents of various age groups in Gujarat, using Google Forms and structured questionnaires. Participants were surveyed about their use of mobile health (mHealth) services, including technologies like smartwatches, online health check-up apps, telehealth services, and other mHealth solutions.

#### Data Analysis:

This study used SPSS 25 to test research hypotheses. Descriptive statistics were applied to analyse demographic data. Exploratory Factor Analysis (EFA) identified key factors influencing mHealth adoption, while Multiple Regression Analysis assessed their impact.

## RESULTS AND INTERPRETATION

#### Descriptive analysis:

The descriptive analysis of the respondents' demographics reveals that most participants are male, primarily aged between 21 and 40 years. The majority have a graduate-level education, with a significant portion being married. Additionally, most respondents report an annual income between 200,001 and 500,000. This overview highlights the key demographic characteristics of the sample, including age, gender, education, marital status, and income level.

**Table 1 Demographic information of the respondents**

| Demographic Variable |                                | Frequency | Percentage |
|----------------------|--------------------------------|-----------|------------|
| Gender               | Male                           | 351       | 82.4       |
|                      | Female                         | 75        | 17.6       |
| Age                  | Under 20                       | 26        | 6.1        |
|                      | 21-40                          | 340       | 79.8       |
|                      | 41-60                          | 52        | 12.2       |
|                      | above 60                       | 8         | 1.9        |
|                      | SSC                            | 23        | 4.4        |
| Education            | Graduation                     | 153       | 29.5       |
|                      | Post-Graduation                | 332       | 64.1       |
|                      | Other (PhD, ITI, Diploma etc.) | 10        | 1.9        |
|                      | Less than 2,00,000             | 51        | 12.0       |
| Annual Income        | 2,00,001 to 5,00,000           | 198       | 46.5       |
|                      | 5,00,001 to 10,00,000          | 132       | 31.0       |
|                      | More than 10,00,000            | 45        | 10.6       |
|                      | Married                        | 297       | 69.7       |
| Marital Status       | Unmarried                      | 129       | 30.3       |

[Source: Researcher Own Generated]

#### Reliability and Validity test:

To evaluate the reliability and validity of the variables, Cronbach's Alpha and the KMO test were employed. Cronbach's Alpha values above the 0.6 threshold confirmed the reliability of the variables. Additionally, Exploratory Factor Analysis (EFA) was performed to identify the most and least impactful factors by revealing the underlying relationships between the measured variables.

**Table 2 Reliability**

| Sr. No. | Constructs                            | No. of Statements | Cronbach's Alpha |
|---------|---------------------------------------|-------------------|------------------|
| 1       | Hedonic Motivation                    | 3                 | 0.829            |
| 2       | Performance Expectancy                | 6                 | 0.808            |
| 3       | Waiting Time                          | 3                 | 0.873            |
| 4       | Percieved Surveillance                | 3                 | 0.722            |
| 5       | Effort Expectancy                     | 5                 | 0.724            |
| 6       | Social Influence                      | 5                 | 0.719            |
| 7       | Facilitating Conditions               | 6                 | 0.723            |
| 8       | Percieved intrusion                   | 3                 | 0.726            |
| 9       | Secondary use of personal information | 3                 | 0.853            |
| 10      | mHealth                               | 6                 | 0.735            |

[Source: Researcher Own Generated]

The KMO (Kaiser-Meyer-Olkin) measure and Bartlett's test are essential for assessing the suitability of data for Exploratory

Factor Analysis (EFA). A KMO value above 0.6 indicates good sampling adequacy. In this study, the KMO value of 0.868 exceeds the threshold, confirming that the data is highly suitable for EFA and that the relationships between variables are strong. This ensures that the factor analysis will yield reliable and meaningful results, supporting the continuation of the analysis.

**Table 3 KMO and Bartlett's Test**

|                                                  |                    |          |
|--------------------------------------------------|--------------------|----------|
| Kaiser-Meyer-Olkin Measure of Sampling Adequacy. |                    | 0.868    |
| Bartlett's Test of Sphericity                    | Approx. Chi-Square | 9482.914 |
|                                                  | df                 | 1126     |
|                                                  | Sig.               | 0.000    |

[Source: Researcher Own Generated]

The rotated component matrix reveals the structure of all ten factors, as shown in the table. During the test, some items did not meet the loading criteria and were excluded from further analysis in the EFA. The table clearly indicates that Performance Expectancy is the most influential factor in the adoption and effectiveness of mHealth services, while Social Influence has the least impact on these outcomes.

**Table 4 Rotated Component Matrix<sup>a</sup>**

| Factors                               | Items | Component |       |       |       |       |       |       |       |       |    |
|---------------------------------------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|----|
|                                       |       | 1         | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10 |
| Performance Expectancy                | PE2   | 0.762     |       |       |       |       |       |       |       |       |    |
|                                       | PE1   | 0.709     |       |       |       |       |       |       |       |       |    |
|                                       | PE3   | 0.686     |       |       |       |       |       |       |       |       |    |
|                                       | PE5   | 0.686     |       |       |       |       |       |       |       |       |    |
|                                       | PE6   | 0.682     |       |       |       |       |       |       |       |       |    |
|                                       | PE4   | 0.671     |       |       |       |       |       |       |       |       |    |
| Facilitating Conditions               | FC3   |           | 0.758 |       |       |       |       |       |       |       |    |
|                                       | FC2   |           | 0.695 |       |       |       |       |       |       |       |    |
|                                       | FC1   |           | 0.679 |       |       |       |       |       |       |       |    |
|                                       | FC5   |           | 0.628 |       |       |       |       |       |       |       |    |
|                                       | FC4   |           | 0.554 |       |       |       |       |       |       |       |    |
|                                       | FC6   |           | 0.541 |       |       |       |       |       |       |       |    |
| Waiting Time                          | WT1   |           |       | 0.806 |       |       |       |       |       |       |    |
|                                       | WT3   |           |       | 0.769 |       |       |       |       |       |       |    |
|                                       | WT2   |           |       | 0.747 |       |       |       |       |       |       |    |
| Perceived Surveillance                | PS2   |           |       |       | 0.813 |       |       |       |       |       |    |
|                                       | PS3   |           |       |       | 0.781 |       |       |       |       |       |    |
|                                       | PS1   |           |       |       | 0.711 |       |       |       |       |       |    |
| Perceived intrusion                   | PI1   |           |       |       |       | 0.759 |       |       |       |       |    |
|                                       | PI3   |           |       |       |       | 0.723 |       |       |       |       |    |
|                                       | PI2   |           |       |       |       | 0.618 |       |       |       |       |    |
| Hedonic Motivation                    | HM1   |           |       |       |       |       | 0.701 |       |       |       |    |
|                                       | HM2   |           |       |       |       |       | 0.687 |       |       |       |    |
|                                       | HM3   |           |       |       |       |       | 0.657 |       |       |       |    |
| Effort Expectancy                     | EE4   |           |       |       |       |       |       | 0.756 |       |       |    |
|                                       | EE1   |           |       |       |       |       |       | 0.724 |       |       |    |
|                                       | EE3   |           |       |       |       |       |       | 0.665 |       |       |    |
|                                       | EE5   |           |       |       |       |       |       | 0.624 |       |       |    |
|                                       | EE2   |           |       |       |       |       |       | 0.592 |       |       |    |
| Secondary use of personal information | SUPI2 |           |       |       |       |       |       |       | 0.781 |       |    |
|                                       | SUPI3 |           |       |       |       |       |       |       | 0.745 |       |    |
|                                       | SUPI1 |           |       |       |       |       |       |       | 0.725 |       |    |
| mHealth                               | MH2   |           |       |       |       |       |       |       |       | 0.706 |    |
|                                       | MH1   |           |       |       |       |       |       |       |       | 0.698 |    |
|                                       | MH4   |           |       |       |       |       |       |       |       | 0.646 |    |
|                                       | MH5   |           |       |       |       |       |       |       |       | 0.849 |    |
|                                       | MH6   |           |       |       |       |       |       |       |       | 0.81  |    |
|                                       | MH3   |           |       |       |       |       |       |       |       | 0.784 |    |

|                                                     |     |  |  |  |  |  |  |  |  |       |
|-----------------------------------------------------|-----|--|--|--|--|--|--|--|--|-------|
| Social Influence                                    | SI2 |  |  |  |  |  |  |  |  | 0.753 |
|                                                     | SI3 |  |  |  |  |  |  |  |  | 0.695 |
|                                                     | SI1 |  |  |  |  |  |  |  |  | 0.665 |
|                                                     | SI4 |  |  |  |  |  |  |  |  | 0.798 |
|                                                     | SI5 |  |  |  |  |  |  |  |  | 0.777 |
| Extraction Method: Principal Component Analysis.    |     |  |  |  |  |  |  |  |  |       |
| Rotation Method: Varimax with Kaiser Normalization. |     |  |  |  |  |  |  |  |  |       |
| a. Rotation converged in 9 iterations.              |     |  |  |  |  |  |  |  |  |       |

[Source: Researcher Own Generated]

Using Exploratory Factor Analysis (EFA) with Varimax rotation, the survey questions were categorized into ten factors. Among these, performance expectancy was identified as the most significant factor influencing mHealth adoption, underlining the importance of perceived benefits and effectiveness. On the other hand, social influence was found to have the least impact, indicating that peer recommendations play a minimal role in users' adoption decisions. This demonstrates the varying significance of different factors in shaping mHealth adoption behavior.

Multiple Regression:

A multiple regression analysis was conducted to assess the impact of various factors on the adoption and effectiveness of mobile health (mHealth) services in India, revealing an R-squared value of 0.523. This indicates that 52.3% of the variation in mHealth adoption can be explained by the factors included in the model. Exploratory Factor Analysis (EFA) identified the key factors influencing adoption, with all except waiting time showing significant effects (p-value < 0.05). Performance expectancy emerged as the most influential factor with a standardized beta of 0.319, while perceived surveillance had the least impact, with a beta value of 0.107. These results emphasize the importance of certain factors in mHealth adoption in India.

**Table 5 Model Summary**

| Model | R     | R Square | Adjusted R Square | Std. Error of the Estimate |
|-------|-------|----------|-------------------|----------------------------|
| 1     | 0.618 | 0.523    | 0.418             | 0.37407                    |

[Source: Researcher Own Generated]

**Table 6 Coefficient<sup>a</sup>**

| Model |                                       | Unstandardized Coefficients |            | Standardized Coefficients | t      | Sig.  |
|-------|---------------------------------------|-----------------------------|------------|---------------------------|--------|-------|
|       |                                       | B                           | Std. Error | Beta                      |        |       |
| 1     | (Constant)                            | 0.837                       | 0.128      |                           | 7.112  | 0.000 |
|       | Hedonic Motivation                    | 0.196                       | 0.042      | 0.260                     | 6.04   | 0.000 |
|       | Performance Expectancy                | 0.093                       | 0.045      | 0.319                     | 2.456  | 0.011 |
|       | Waiting Time                          | -0.009                      | 0.046      | -0.016                    | -0.593 | 0.555 |
|       | Perceived Surveillance                | 0.078                       | 0.045      | 0.107                     | 2.02   | 0.035 |
|       | Effort Expectancy                     | 0.111                       | 0.047      | 0.142                     | 2.838  | 0.004 |
|       | Social Influence                      | 0.155                       | 0.045      | 0.199                     | 4.366  | 0.000 |
|       | Facilitating Conditions               | 0.109                       | 0.045      | 0.145                     | 2.946  | 0.003 |
|       | Secondary use of personal information | 0.091                       | 0.005      | 0.173                     | 3.651  | 0.000 |
|       | Perceived intrusion                   | 0.130                       | 0.032      | 0.163                     | 3.651  | 0.000 |

a. Dependent Variable - mHealth

[Source: Researcher Own Generated]

## CONCLUSION

This study identified ten key factors influencing mHealth adoption, with performance expectancy emerging as the most significant, followed by waiting time, which negatively impacted adoption. Perceived surveillance had minimal influence on users' adoption decisions. These findings suggest that enhancing performance expectancy and reducing waiting times can boost user engagement with mHealth applications. The results align with previous research, including Mofokeng & Tan (2021), which emphasizes the role of user expectations and experiences in the successful implementation of health technology solutions.

Limitations and implication of the study:

While this study provides valuable insights into mHealth adoption, it has some limitations. As a descriptive study, it relies on observational data, which may limit the depth of its conclusions. The sampling method includes individuals using health monitoring apps or websites but does not account for demographic differences or specific usage contexts. Future research could focus on targeted demographics or geographic regions to improve the applicability of the findings.

Furthermore, mHealth service providers should prioritize accuracy and reliability to build user trust. Incorrect diagnoses or misinterpreted health information can undermine confidence in the applications. Additionally, ensuring a user-friendly and

engaging interface is crucial for improving accessibility and minimizing barriers to effective use. By addressing these factors, mHealth providers can enhance user satisfaction and encourage wider adoption of mobile health technologies.

## REFERENCES

- [1] Ahmed et al. (2019). Digital health services in Bangladesh: A mean for addressing disparities in access to health services? *JMIR mHealth and uHealth*.
- [2] Alam, M. Z., Hoque, M.D.R., Wang H., Zapan, B. (2020). Factors influencing the adoption of mHealth services in a developing country: A patient-centric study. *International Journal of Information Management*, 50, 128-143.
- [3] Balapour A., Reyhav I., Sabherwal R., and Azuri J. (2019). Mobile technology identity and self-efficacy: Implications for the adoption of clinically supported mobile health apps. *International Journal of Information Management*, 49, 58-68.
- [4] Branka, R. T., Aleksandra, L., Zorica, B., Dragan, B., & Aleksandra, D. P. (2017). Usability of m-Health Services: A Health. *Management: Journal Of Sustainable Business And Management Solutions In Emerging Economies*, 21(80), 45-54.
- [5] Chen, C. E., Harrington, R. A., Desai, S. A., Mahaffey, K. W., & Turakhia, M. P. (2019). "Characteristics of Digital Health Studies Registered in ClinicalTrials.gov". *JAMA Internal Medicine*, 179(6), 838-840.
- [6] Chigona, Mphatso N. M. and Wallace. (2017). mHealth outcomes for pregnant mothers in Malawi: a capability perspective. *Information Technology for Development*, 24(2), 245-278.
- [7] Currie, W. (2016). Health organizations' adoption and use of mobile technology in France, the USA and UK. *Procedia Computer Science*, 98, 413-418.
- [8] Deloitte. (2018). *Consumer interest in virtual care outpaces physician adoption*. US.
- [9] Deng, Z., Mo, X., Liu S. (2014). Comparison of the middle-aged and older users' adoption of mobile health services in China. *International Journal of Medical Informatics*, 83(3), 210-224.
- [10] Emmanuel, I. E., Rob, G., & Ciara, H. (2016). How can mHealth applications that are developed in one area of the developing world be adapted for use in others? *Journal of Decision Systems*, 25, 536-541.
- [11] Global Observatory for eHealth. (2016). *Global diffusion of eHealth: Making universal health coverage achievable*. Geneva: WHO.
- [12] Hoque, Md, Rakibul, Karim, M. R., and Amin, M. (2015). Factors Affecting the Adoption of mHealth Services among Young Citizens: A Structural Equation Modeling Approach. *Asian Business Review*, 5(2).
- [13] Hoque, R., and Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: an extention of UTAUT model. *International Journal of Medical Instrument*, 101, 75-84.
- [14] Ibukun O., Onaedo I., Bruno M., Marjolein Z., Marjolein D. (2018). Mobile health and the performance of metanal health care workers in low and middle income countries: A realistic review. *International Journal of Care Coordination*, 21(3), 73-86.
- [15] Liu, F., Ngai, E., & Ju, X. (2019). Understanding mobile health service use: An investigation of routine and emergency use intentions. *International Journal of Information Management*, 45, 107-117.
- [16] Meng F, Guo X, Peng Z, Lai KH, and Zhao X. (2019). Investigating the Adoption of Mobile Health Services by Elderly Users: Trust Transfer Model and Survey Study. *JMIR Mhealth Uhealth*, 7(1), e12269.
- [17] Mofokeng, T. E., & Tan, A. W. (2021). The impact of online shopping attributes on customer satisfaction and loyalty: Moderating effects of e-commerce experience. *Cogent Business & Management*, 8(1). doi:<https://doi.org/10.1080/23311975.2021.1968206>
- [18] Nabila, N., Mehree, I., & Afrin R. (2019). The Changing Paradigm of Health and Mobile Phones: An Innovation in the Health Care System. *Journal of Global Information Management*, 27(1), 19-46.
- [19] Nadine, B., Natali, H., and Julia, C. M. Weert. (2018). Differences in mobile health app use: A source of new digital inequalities? *The Information Society*, 34(3), 183-193.
- [20] Ndayizigamiye, P., & Maharaj, M. (2017). The determinants of mobile health in Burundi. *The African Journal of Information Systems*, 9(3), 171-191.
- [21] Nikou, S. (2015). Mobile technology and forgotten consumers: the young-elderly. *International Journal of Consumer Studies*, 39, 294-304.
- [22] O'Donoghue, J., Majeed, A., Carroll, C., Gallagher, J., Wark, P. A., O'Connor, S., . . . Fadahunsi, K. P. (2019). Protocol for a systematic review and qualitative synthesis of information quality. *BMJ Open*, 9(3).
- [23] Rosling. (2019). *Gapminder*.
- [24] Rui, M., Qi, W., Zheng, W., Xilin, Z., Yuqin, S., Hui, Z., Qingfang, S., & Zhibin, J. (2017). Factors that influence users' adoption intention of mobile health: a structural equation modeling approach. *International Journal of Production Research*, 55(19), 5801-5815.
- [25] Shareef, M. A., Vinodkumar, Umakumar. (2014). Predicting mobile health adoption behaviour: A demand side perspective. *JOURNAL OF CUSTOMER BEHAVIOUR*, 13(3), 187-205.

- [26] Xi, Z., Xiangda, Y., Xiongfei, C., Yongqiang, S., Hui, C., & Jinghuai, S. (2018). The role of perceived e-health literacy in users' continuance intention to use mobile healthcare applications: an exploratory empirical study in China. *Information technology for development*, 24(2), 198-223.
- [27] Yadavar, S. (2019, April 7). *World Health Day 2019: Access, quality of care ranks India among lowest globally*. Retrieved June 23, 2020, from Firstpost: [www.Firstpost.com](http://www.Firstpost.com)
- [28] Yang Zhao, Q. N. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. *International Journal of Information Management*, 43, 342-350.